Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38401043

RESUMO

Natural substances have been demonstrated to be an unrivalled source of anticancer drugs in the present era of pharmacological development. Plant-based substances, together with their derivatives through analogues, play a significant character in the treatment of cancer by altering the tumor microenvironment and several signaling pathways. In this study, it was investigated whether the natural drugs, formononetin (FN) and sulforaphane (SFN), when combined, assess the efficacy of inhibiting cervical cancer cell proliferation by impeding the PI3K/Akt/mTOR signaling pathway in HeLa cells. The cells were treated with the combination of FN and SFN (FN + SFN) in various concentrations (0-50 µM) for 24 h and then analyzed for various experiments. The combination of FN + SFN-mediated cytotoxicity was analyzed by MTT assay. DCFH-DA staining was used to assess the ROS measurement, and apoptotic changes were studied by dual (AO/EtBr) staining assays. Protein expressions of cell survival, cell cycle, proliferation, and apoptosis protein were evaluated by flow cytometry and western blotting. Results showed that the cytotoxicity of FN and SFN was determined to be around 23.7 µM and 26.92 µM, respectively. Combining FN and SFN causes considerable cytotoxicity in HeLa cells, with an IC50 of 21.6 µM after 24-h incubation. Additionally, HeLa cells treated with FN and SFN together showed increased apoptotic signals and considerable ROS generation. Consequently, by preventing the production of PI3K, AKT, and mToR-mediated regulation of proliferation and cell cycle-regulating proteins, the combined use of FN + SFN has been regarded as a chemotherapeutic medication. Further research will need to be done shortly to determine how effectively the co-treatment promotes apoptosis to employ them economically.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 221: 117214, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31158761

RESUMO

Accurate prediction on the up-conversion intersystem crossing rate (kUISC) is a critical issue for the molecular design of an efficient thermally activated delayed fluorescence (TADF) emitter, and the kUISC rate is considered to be mainly determined by the spin-orbit coupling matrix element (SOCME) and the singlet-triplet energy difference (∆EST). In the present contribution, we strategically designed a series of organic molecules, bearing an isoindole-dione core as the electron acceptor (A) unit and dinitrocarbazolyl, carbazolyl, diphenylcarbazolyl, dicarbazolyl and tercarbazolyl groups as the electron donor (D) units, respectively. Their SOCME and ∆EST values between the S1 and T1 states were calculated by the DFT and TD-DFT methodes, and the kUISC rates were estimated by using the semiclassical Marcus theory. The present studies indicate that as the π-conjugation in the D unit enhances, the ∆EST value gradually decreases, and the kUISC rate gradually increases. The molecule using tercarbazolyl as the D moiety is found to exhibit the largest kUISC in the present computations, as high as 1.22 × 106 s-1, which is of the same order of magnitude as an experimentally observed highly-efficient TADF emitter using a 4-benzoylpyridine as the A unit and the same tercarbazolyl group as the D moiety. The present results sufficiently prove the necessity of introducing strong electron-rich substituent groups when designing highly efficient TADF emitters.

3.
J Comput Chem ; 40(16): 1578-1585, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30802324

RESUMO

Issue concerning accurate prediction of the reverse intersystem crossing rate (kRISC ) is critical for developing novel efficient thermally activated delayed fluorescence (TADF) materials. In this contribution, the kRISC rates from the lowest excited triplet T1 state to the lowest excited singlet S1 state were evaluated for five donor-π-acceptor-type pyrimidine-based TADF emitters using the semiclassical Marcus theory. Both the singlet-triplet energy difference (ΔEST ) and spin-orbit coupling (V) between the S1 and T1 states were investigated by performing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In addition, their fluorescence emission wavelengths (λem ) were also calculated at the TD-DFT level. The predicted kRISC and λem values are found to reproduce well the available experimental findings. The present results reveal that the kRISC rates of molecules possessing the unsymmetrical diphenyl pyrimidine acceptor core are calculated to be slightly larger than those of their analogues with the symmetrical diphenyl pyrimidine. In addition, introducing two tert-butyl groups into the 2,7-positions of the donor moiety of the latter is also an effective method for increasing kRISC when designing TADF emitters. Such a difference is related to the nature of the T1 excited state. A more remarkable charge-transfer (CT) contribution to the state can achieve a smaller ΔEST , leading to a more efficient RISC process, and consequently a shorter delayed fluorescence lifetime as observed experimentally. © 2019 Wiley Periodicals, Inc.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 297-303, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29156317

RESUMO

Based upon two thermally activated delayed fluorescence (TADF) emitters 1 and 2, compounds 3-6 have been designed by replacing the carbazol group with the bis(4-biphenyl)amine one (3 and 4) and introducing the electron-withdrawing CF3 group into the acceptor unit of 3 and 4 (5 and 6). It is found that the present calculations predict comparable but relatively large energy differences (approximate 0.5eV) between the lowest singlet S1 and triplet T1 states (∆EST) for the six targeted compounds. In order to explain the highly-efficient TADF behavior observed in compounds 1 and 2, the"triplet reservoir" mechanism has been proposed. In addition, the fluorescence rates of all six compounds are very large, in 107-108 orders of magnitude. According to the present calculations, it is a reasonable assumption that the newly designed compounds 3-6 could be considered as the potential TADF emitters, which needs to be further verified by experimental techniques.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28641237

RESUMO

Excited-state intramolecular proton transfer (ESIPT) reactions occurring in the S1 state for five molecules, which possess five/six-membered ring intramolecular NH···N or OH···N hydrogen bonds bearing quinoline or 2-phenylpyridine moiety, have been described in detail by the time-dependent density functional theory (TD-DFT) approach using the B3LYP hybrid functional. For the five molecules, the constrained potential energy profiles along the ESIPT reactions show that proton transfer is barrierless in molecules possessing six-membered ring intramolecular H-bonds, which is smoother than that with certain barriers in five-membered ring H-bonding systems. For the latter, chemical modification by a more strong acid group can lower the ESIPT barrier significantly, which harnesses the ESIPT reaction from a difficult type to a fast one. The energy barrier of the ESIPT reaction depends on the intensity of the intramolecular H-bond, which can be measured with the topological descriptors by topology analysis of the bond critical point (BCP) of the intramolecular H-bond. It is found that when the value of electron density ρ(r) at BCP is bigger than 0.025a.u., the corresponding molecule might go through an ultrafast and barrierless ESIPT process, which opens a new scenario to explore the ESIPT reactions.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 183: 123-130, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28441539

RESUMO

Enol-keto proton tautomerization and cis-trans isomerization reactions of a novel excited-state intramolecular proton transfer (ESIPT) fluorophore of BTImP and its protonated form (BTImP+) were explored using density functional theory/time-dependent density functional theory (DFT/TD-DFT) computational methods with a B3LYP hybrid functional and the 6-31+G(d,p) basis set. In addition, the absorption and fluorescence spectra were calculated at the TD-B3LYP/6-31+G(d,p) level of theory. Our results reveal that both BTImP and BTImP+ can undergo an ultrafast ESIPT reaction, giving rise to the single fluorescence emission with different fluorescence colors, which are nicely consistent with the experimental findings. Calculations also show that following the ultrafast ESIPT, BTImP and BTImP+ can experience the distinctly different cis-trans isomerization processes. The intersystem crossing between the first excited singlet S1 state and triplet T1 state is found to play an important role in the photoisomerization process of BTImP+. In addition, the energy barrier of the trans-keto→cis-keto isomerization in the ground state of BTImP+ is calculated to be 10.49kcalmol-1, which implies that there may exist a long-lived trans-keto species in the ground state for BTImP+.

7.
Sci Rep ; 7: 43105, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225084

RESUMO

Neuroimaging evidence implicates the association between rumination and default mode network (DMN) in major depressive disorder (MDD). However, the relationship between rumination and DMN subsystems remains incompletely understood, especially in patients with MDD. Thirty-three first-episode drug-naive patients with MDD and thirty-three healthy controls (HCs) were enrolled and underwent resting-sate fMRI scanning. Functional connectivity analysis was performed based on 11 pre-defined regions of interest (ROIs) for three DMN subsystems: the midline core, dorsal medial prefrontal cortex (dMPFC) and medial temporal lobe (MTL). Compared with HCs group, patients with MDD exhibited increased within-system connectivity in the dMPFC subsystem and inter-system connectivity between the dMPFC and MTL subsystems. Decreased inter-system connectivity was identified between the midline core and dMPFC subsystem in MDD patients. Depressive rumination was positively correlated with within-system connectivity in the dMPFC subsystem (dMPFC-TempP) and with inter-system connectivity between the dMPFC and MTL subsystems (LTC-PHC). Our results suggest MDD may be characterized by abnormal DMN subsystems connectivity, which may contribute to the pathophysiology of the maladaptive self-focus in MDD patients.


Assuntos
Conectoma , Transtorno Depressivo Maior/fisiopatologia , Rede Nervosa/fisiopatologia , Ruminação Cognitiva , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
8.
Front Psychol ; 8: 84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194128

RESUMO

Recent studies have shown that substance dependence (addiction) is accompanied with altered activity patterns of the default mode network (DMN). However, the neural correlates of the resting-state DMN and betel quid dependence (BQD)-related physiopathological characteristics still remain unclear. Resting-state functional magnetic resonance imaging images were obtained from 26 BQD individuals and 28 matched healthy control subjects. Group independent component analysis was performed to analyze the resting state images into spatially independent components. Gray matter volume was examined as covariate with voxel-based morphometry to rule out its effect on the functional results. The severity of BQD was assessed by the BQD Scale (BQDS). We observed decreased functional connectivity in anterior part of the DMN including ventral medial prefrontal cortex, orbital MPFC (OMPFC)/anterior cingulate cortex (ACC). Furthermore, the functional connectivity within the OMPFC/ACC in BQD individuals was negatively correlated with BQDS (p = 0.01, r = -0.49). We reported decreased functional connectivity within anterior part of the DMN in BQD individuals, which provides new evidence for the role of the DMN in the pathophysiology of BQD.

9.
Artigo em Inglês | MEDLINE | ID: mdl-28012390

RESUMO

Excited-state intramolecular proton transfer (ESIPT) dynamics of the amino-type hydrogen-bonding compound 2-(2'-aminophenyl)benzothiazole (PBT-NH2) as well as its two derivatives 2-(5'-cyano-2'-aminophenyl)benzothiazole (CN-PBT-NH2) and 2-(5'-cyano-2'-tosylaminophenyl)benzothiazole (CN-PBT-NHTs) were studied by the time-dependent density functional theory (TD-DFT) approach with the B3LYP density functional, and their absorption and emission spectra were also explored at the same level of theory. A good agreement is observed between the theoretical simulations and experimental spectra, indicating that the present calculations are reasonably reliable. In addition, it is also found that the energy barriers of the first excited singlet state of the three targeted molecules along the ESIPT reaction are computed to be 0.38, 0.34 and 0.12eV, respectively, showing the trend of gradual decrease, which implies that the introduction of the electron-withdrawing cyano or tosyl group can facilitate the occurrence of the ESIPT reaction of these amino-type H-bonding systems. Following the ESIPT, both CN-PBT-NH2 and CN-PBT-NHTs dye molecules can undergo the cis-trans isomerization reactions in the ground-state and excited-state potential energy curves along the C2-C3 bond between benzothiazole and phenyl moieties, where the energy barriers of the trans-tautomer→cis-tautomer isomerizations in the ground states are calculated to be 0.83 and 0.34eV, respectively. According to our calculations, it is plausible that there may exist the long-lived trans-tautomer species in the ground states of CN-PBT-NH2 and CN-PBT-NHTs.

10.
J Chem Phys ; 144(15): 154306, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27389219

RESUMO

Photoinduced ultrafast non-adiabatic decay of 9-methylhypoxanthine (9MHPX) in aqueous solution was investigated by ab initio surface-hopping dynamics calculations using a combined quantum mechanical/molecular mechanical approach. The absorption spectra of 9MHPX in aqueous solution were also explored by the hybrid cluster-continuum model at the level of time-dependent density functional theory along with the polarizable continuum model (PCM). The static electronic-structure calculations indicate that the absorption spectra of 9MHPX simulated by TD-B3LYP/PCM and TD-X3LYP/PCM can reproduce very well the experimental findings, with the accuracy of about 0.20 eV. According to dynamics simulations, irradiation of 9MHPX populates the bright excited singlet S1 state, which may undergo an ultrafast non-radiative deactivation to the S0 state. The lifetime of the S1 state of 9MHPX in aqueous solution is predicted to be 115.6 fs, slightly longer than that in the gas phase (88.8 fs), suggesting that the solventwater has no significant influence on the excited-state lifetime of 9MHPX. Such a behavior in 9MHPX is distinctly different from its parent hypoxanthine keto-N9H tautomer in which the excited-state lifetime of the latter in watersolution was remarkably enhanced as compared to the gas phase. The significant difference of the photodynamical behaviors between 9MHPX and keto-N9H can be ascribed to their different hydrogen bond environment in aqueous solution.


Assuntos
Hipoxantinas/química , Ligação de Hidrogênio , Luz , Simulação de Dinâmica Molecular , Teoria Quântica , Espectrofotometria , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...